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The paper describes calculations of the statistical properties of turbulence- 
induced plate vibration, the computational scheme making no reference to 
Fourier synthesis. The problem considered is that of a local turbulent field acting 
on an infinite thin elastic plate, and the statistics of the response field are described 
at  large distances from the forcing region. Effects of mechanical dissipation in 
the plate are examined, along with a discussion of the relevance of the results to 
problems involving plates of finite extent. 

1. Introduction 
The equation describing the motion of a thin elastic plate under an externally 

applied pressure field p(x,t) has the well-known form (e.g. Cremer & Heck1 
1967), 

( 4 + B V 4 )  y(x, t )  = p(x, t ) .  (1.1) 

Here m is the mass of the plate per unit area, B the bending stiffness; y is the 
deflexion of the plate, and V2 denotes the two-dimensional Laplacian. Mechanical 
dissipation in the plate is neglected for the moment. It is the object of this paper 
to present solutions of (1.1) giving the statistics of the plate response in terms of 
those of a random pressure field, and using entirely real space and time Green's 
functions. General results are obtained for the mean vibrational energy, the 
mean square bending moment and the mean energy flux generated at  large 
distances from a finite region excited by a random, statistically steady pressure 
field. A knowledge of these three quantities is important, respectively, in prob- 
lems of sound radiation from the plate, structural fatigue, and the motion of a 
finite plate excited by reverberant amplification of its normal modes. The 
particular case of plate excitation by a turbulent boundary layer is considered 
in detail. The dependence of the vibration parameters upon length and velocity 
scales characterizing the turbulent flow is obtained in the high and low speed 
limits, without any assumptions as to the detailed form of the pressure field 
statistics. 

The analogous acoustic problem in three dimensions is governed by Lighthill's 
(1952) wave equation 
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The turbulent excitation problem for this equation has been solved (Lighthill 
1952, 1954; Ffowcs Williams 1963) without recourse to Fourier analysis. How- 
ever, solution using only real space and time Green’s functions is greatly facili- 
tated by the fact that the Green’s function for (1.2) contains a delta function 

8(t - tl - Ix -yl/a,)  
47railx - yI 

G(x, y, t, t l )  = ~ 

In two dimensions this is not so, but Ffowcs Williams & Hawkings (1968) 
have shown how the corresponding analysis can be carried through none the less. 
The physical problem used by these authors BS a basis for a two-dimensional 
version of (1.2) is that of determining the wave amplitude in shallow water at 
large distances from a locally turbulent region. The problem to be considered 
here is more complicated, for waves in a plate form a dispersive system, while 
those on shallow water do not. A subsequent paper will use the methods given 
here to tackle the problem of dispersive water wave generation on water of great 
depth. 

Now in previous discussions of (1.1) it has often been assumed that the random 
pressure field acts over the whole infinite surface of the plate, and that the pres- 
sure field is statistically homogeneous in space and stationary in time. Spectral 
analysis in space and time then allows the problem to be treated quite simply 
(e.g. Ffowcs Williams & Lyon 1963). However, the only mean value which is 
realistically given (in the sense that the results are relevant to any practical 
situation) by such a theory is the power input from the pressure field to the plate. 
Other mean values, such as the mean square velocity at  any point, are infinite if 
mechanical dissipation is neglected (see LighthiIl (1953) and Crighton (1969) 
for the analogous acoustic problem). Inclusion of finite dissipation leads to a 
finite intensity, but this does not make the results any more relevant. For first, 
the intensity is sensitive to the precise form of dissipation assumed, secondly 
the intensity is still so large that non-linear effects probably provide the proper 
control, rather than linear dissipative effects, and thirdly, we shall see that when 
only a small region of excitation is involved, the dissipative effects are in any 
case negligible compared with the radiation energy loss. 

The non-singular vibration problem, involving only a finite excitation region, 
has been considered before, using Fourier time-analysis (Crighton 1968). The 
results obtained there will be recovered now, as a demonstration of the use of 
the space-time Green’s functions in dispersive systems. 

2. The Green’s functions 
The Green’s function for (1.1) is essentially the solution of 

1 ($ + P V 4 )  y = m 8(x) 8(t),  

in which h = (B/m)* has the dimensions of a kinematic diffusivity. The Green’s 
function for the time-reduced (through the factor exp (id)) plate equation is 
well known (Cremer & Heck1 1967, p. 258). It may be obtained from (2.1) by 
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making a Fourier analysis into (k, w )  space. The inverse integration over wave- 
number k is then performed, with due regard to a radiation condition as 1x1 +co. 
The complete Green’s function is then found by an integration over frequency w 
(Crighton 1968). One finds in this way the following solutions of (2.1): 

Here v = ayfat is the velocity, while q = V2y is proportional to the bending 
moment. In terms of these quantities, the energy density is 

E = &mu2 + &Bq2, (2.3) 

so that &~v2 and &Bq* are the kinetic and elastic energies per unit area, respec- 
tively, and the energy flux vector is 

F = B(vVq - q V V ) .  (2.4) 

The energy equation is readily derived from (1.1) in the form 

g/sE(x ,2)d~ = p(x,t)v(x,t) dx- F(x,t) .v(x)dZ(x), 

where the contour Z, with unit outward normal v, encloses the area 8. 
The Green’s functions (2.2) have singularities which are associated with the 

fact that the functions exist only as generalized functions. Thus v+O as x = 

I X I  --f 00 for any t > 0, while v -+ 00 as t -+ 0 + for any x =I= 0. The singular behaviour 
disappears when the excitation is distributed in space and time, and can also 
be made to disappear for the impulsive excitation if a suitable form for mech- 
anical dissipation in the plate is postulated. To represent mechanical damping, 
one generally writes B in complex form, as B( 1 + ii), where the constant 7 is 
known as the loss factor. Such a representation is obviously relevant only when 
a Fourier time analysis has been made. We suggest now the following modification 
of (1.1) to include dissipation: 

With this form of dissipation (the damping force being proportional to the time 
rate of change of the bending moment), a free flexural wave of frequency w 
decays in amplitude like 

exp (--?). 
This gives agreement with experiment if 7 is interpreted as the usual loss factor 
(for the experimental results on dissipation, see Cremer & Heck1 1967). 

The Green’s function for (2.6) can be shown to be 

20-2 
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and, despite the impulsive excitation, this has none of the singular behaviour of 
(2 .2) .  For the remainder of this paper we shall work with the solutions (2.2), 
though the r81e of mechanical damping will be discussed further in a subsequent 
section. 

3. Plate response to a random pressure field 
Suppose now that a random pressure field acts over a finite region of an in- 

finite plate. The pressure field will be assumed stationary in time, and de- 
partures from spatial homogeneity over the finite region will be neglected. 
Then the pressure covariance 

(P(Y7 t - M Y  + z, t - rl)) = p (z, 4 
is an even function of the space separation z and of the time delay E = 7-71, 

in the sense that P(z,e)  = P( - Z, - E ) .  {. . .} here denotes an ensemble average, 
or equivalently, a time average. 

The solution to (1.1) may be written, with the aid of (2.2), in the form 

From this we form the mean value (w2(x)}, and consider an observation point 
x very distant from all points y at which the fluctuating pressure acts. As a 
first requirement, we take Ix-yl to be large compared with the correlation 
scale for the pressure, that being the distance IzI beyond which the spatial co- 
variance P(z,O) is effectively zero. We then find the following uniform (over 
the area of excitation) contribution to (v2(x)} from unit area at  y; 

(3.2) 

Consider now the 7 integral in (3.2). When x is large, contributions to the r 
integral will be negligible because of cancellation, except for those large values 
of r such that sin(x2/4hr) does not oscillate many times during the pressure 
correlation time scale (the value of E beyond which the autocovariance P(0,e) 
is negligibly small). Since we wish to apply this work to the boundary layer 
type of excitation, we ascribe a length scale L and a time scale LIU to the 
pressure covariance, L, U being typical length and velocity scales in the flow. 
Contributions to the 7 integral then come from the r for which 

i.e. for which r 2 (x/U)R*. 

Here R = U L / h  is a kind of Reynolds number, based on the plate 'diffusivity' 
A. The significance of R will be discussed in some detail later. Suppose now that 
we take x 9 LR-3; we have already required that x % A, so that our condition 
on x is 

x 4 max (L,LR-*). (3.3) 
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Then all values of 7 making a significant contribution to ( 3 . 2 )  are much larger 
than the time scale L/U of P. We may then write 

1 1 e  
7-71=e ,  - -  - -+-, 

71 7 7 2  

the remaining terms being negligible. Further, the limits of the e integration 
can be taken as 03, and ( 3 . 2 )  reduces to 

x sin ] P(z ,  E )  dz d7dE. (3.4) 

The 7 integral can now be performed exactly, and the result contains three 
kinds of term. The first terms, quoted below, are even functions of ( z , E ) ,  of 
order x-1 as X+CQ. Secondly, one has odd functions of e (Fresnel integrals) 
which do not contribute to the ( 2 , ~ )  integral. Finally, there are Fresnel integrals 
whose asymptotic forms, for fixed e and x + CQ, are of order x-8, and these may 
be discarded. Thus we find 

--(v2(x)) a = j Srn J(?) (4nm42x cos ( T - W )  4 4 h E X 2  P ( Z , € ) d Z d € .  (3 .5)  aY z € = O  

A similar calculation for the mean square of q gives simply 

B<q2(x)) = m<V2(X)>7 ( 3 . 6 )  

so that the time averaged kinetic and elastic energies at any point are equal, 
as one would expect. 

The calculation of the energy flux vector from the definition ( 2 . 4 )  is tedious. 
It is sufficient, as x-+ 03, to  calculate the component Fj, of F in the radial direction 
from any convenient origin in the excitation region. The integrated energy flux 
around a distant contour 1 then gives the rate of working of the pressure over 
the excitation area, for the averaged form of (2.5) may be written as 

where G(p)  = sinpS,(p) + cosp C2(p), and C,, S,  denote the Fresnel integrals 

Writing x . z = xz cos 8, the integrated energy flux is found as an integral over 
8, SO that from ( 3 . 7 ) ,  
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For future use, note that when p is small, 
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The formulae (3 .5) ,  (3.6) and (3.8) give expressions for the far-field energies 
and the power input of the pressure field in terms of weighted integrals of the 
pressure covariance. In  the next section, these formulae will be expressed in 
the non-dimensional form appropriate to boundary layer excitation, and the 
dependence of the vibration intensities upon the plate and turbulence parameters 
will be obtained. 

4. Excitation by boundary layer turbulence 
We suppose now that fluid flows over the plate in turbulent motion. When 

the flow Reynolds number is high and the Mach number low, the flow may be 
characterized in the usual way by length and velocity scales L, U ,  for example, 
the boundary layer thickness and the free stream velocity, If p is the (constant) 
fluid density, we define dimensionless variables according to 

2 = &L, E = 2L/U, P(2,s) = p2U4P(0,2). (4.1) 

The parameter R = ULjh is defined as before. Further, we take a quasi-Cartesian 
set of axes for the far-field, z, representing the co-ordinate in the direction x, 
z, the perpendicular co-ordinate. It is convenient also to take u = 2,/2& as a 
new variable in place of 2z. Then, dropping the caret signs, and discarding numeri- 
cal constants which may very easily be recovered, we find from ( 3 4 ,  

If we now let R + 0 in the integral, it becomes 

P(ue4, z,, E )  du dz,de. s 
However, this results in a poor estimate for R < 1, for in strictly incompressible 
flow, the integrated covariance 

sp(., €1 dz 

is zero, while in slightly compressible flow it is of order (Mach number)2 (Ffowcs 
Williams 1965). It is therefore necessary to take the next term of the expansion 
of the cosine in R, and then the integral becomes 

R u 2  P( us&, zy , s )  du dz, ds. s 
Apart from the factor R, this expression is a function entirely of the direction 
(0) of the vector x - V, so that 
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In the case R 9 1, we rescale u according to u = aR-*, and then the integral 
in (4.2) becomes 

Letting R -+ co, the asymptotic value of this integral is 

P(0, zy, s )  da dz, ds, 

and again, apart from the factor R-*, this is a function of direction only. Hence 

In this high-speed limit, the dimensionless energy varies directly as R. 
The results for the power input are obtained in a similar fashion. For R < 1 

we have to use the expansions of the Fresnel functions quoted earlier, and thus 
obtain 

(PV> R2(PU3) ("") m (R < 1). (4.5) 

When R 9 1 we need a slightly different rescaling from that used above. The 
angular integration of the pressure covariance has already been performed as a 
consequence of the integration of the energy flux round a distant contour, so 
that the appropriate rescaling is now z = aR-4, zdz  = adaR-l. This gives us 
now 

Defining an efficiency as y = (pv) /pU3,  a measure of the rate of energy loss 
into the plate compared with the rate of advection of energy in the flow, we see 
that y N R2 when R is small, and that y asymptotes to a constant value as R-t co. 
These results, and also those for the energy, are exactly those found by Fourier 
time analysis (Crighton 1968). Further details of the plate vibration, for example 
the directivity pattern, can be worked out if measured forms of the space-time 
pressure covariance are available. Effects of convection of the pressure field 
could also be examined, though we have not been able to obtain any useful 
results for those effects. It is probably better to examine properties arising from 
source convection in terms of Fourier frequency components, where one has a 
clear distinction between convection velocities which are 'subsonic' and 'super- 
sonic' relative to the free wave speed at  any given frequency. This distinction 
disappears in real time from a strongly dispersive system. 

5. Discussion 
It is interesting to interpret the parameter R* as a Mach number, in analogy 

with the aerodynamic noise problem. The results obtained above can be inter- 
preted in terms of certain integrals of the pressure wave-number frequency spec- 
trum in the Fourier treatment of the problem. The spectrum is evaluated at  the 
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wave-number k = ( w / h ) i  corresponding to a free flexural wave of frequency w ,  
and is then integrated over frequency. When R is small, i.e. h is large, the inte- 
gration path w = hk2 lies close to the w axis of the ( k , w )  plane, and therefore 
excitation and response have the same typical frequency UIL. The response 
wavelength is then A = LR-3, so that when RB < 1, turbulence scales are small 
compared with the radiated wavelength. Note that condition (3.3) is then x >> A, 
which is the far-field condition with respect to the typical wavelength A. 

Suppose now that R B 1, i.e. h is small. Then the curve w = hk2 lies very close 
to the k axis, and hence length scales in both excitation and response are equal. 
On the other hand, the time scale of the response is now RLl U ,  and this is large 
compared with the excitation time scale LIU. Since A and L are now equal, 
condition (3.3) is still the far-field condition for wavelength A. Similar considera- 
tions apply in the acoustic problem, where one has w = a,k in place of w = hk2, 
and the Mach number M = U/a,  in place of R* (or in place of R, for the quad- 
ratic dispersion relation w = hk2 allows both as a suitable kind of Mach number). 
There the cases M < 1, M 9 1 are referred to as the ‘acoustically compact) and 
‘ non-compact ’ limits. 

These ideas emerge also from the space-time analysis. We have seen already 
that contributions to the intensity come only from the x, r satisfying 

Similar consideration of (3.5) and (3.8) shows that this requirement must 
also be satisfied when x, r are replaced by the separation variables z ,  e:  

z 
e 
- 5 UR-4. 

This condition may be referred to as a time-matching; the trigonometric terms 
in (3.5) or (3.8) must not oscillate rapidly with 8 on the time scale L/U of the pres- 
sure fluctuations. There is another condition which must be satisfied if we are to 
obtain an appreciable contribution to the intensity. This is the space-matching 

stating that trigonometric terms must not oscillate rapidly with z on the length 
scale L of the pressure fluctuations. Thus 

z 
€ 
- 5 UR-I for the space-matching, (5.2) 

and (5.1) and (5.2) must be satisfied simultaneously. Clearly, when R$< 1 
it is sufficient to match the time scales, while when R* 9 1 the length scales must 
be matched, which is in accordance with the ideas given earlier. 

We can now give a criterion for a finite plate, of dimension D, to be effectively 
infinite. When R* < 1, the z , ~  making appreciable contributions to the intensity 
satisfy XIS 5 UR-*, so that c = UR-4 is an upper limit to the effective speed 
with which waves in the plate travel. (Alternatively, c is given by c = hk with 
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the typical response wave-number k = L-l R4.) We can regard the plate as in- 
finite if the time taken by a wave travelling at  speed c to cross the distance D 
is large compared with the time scale LIU of the source. Thus we require 

D L  - B V  or D B A .  
C 

When Rg 9 1 we require similarly D + LR-I, and since the spatial condition 
D 3 L is obviously also necessary, we find again that 

D B A = L R - *  or L (5.3) 

for the plate to be effectively infinite. 
In underwater applications it appears that R is generally small (R N 10-2 is 

perhaps typical), so that plates of typical dimension lOL may be regarded as 
infinite. In aeronautical contexts, R is usually much larger, and the condition 
(5.3) is more easily attained. 

We return now to the question of mechanical dissipation. With the dissipation 
represented by (2.7) it  is easily seen that the attenuation length 1 is given by 

1 = 7-1 A, (5.4) 

where the wavelength A = LR-4 for R4 < 1, and A = L for R* 9 1. We can 
therefore satisfy the far-field condition (3.3), with neglect of mechanical dissipa- 
tion, for values of x satisfying 

Since the loss factor is generally of order 
and dissipation is negligible except at extreme distances. 

A x < 7-l A. (5.5) 

condition (5 .5 )  is not very stringent, 
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